依诺肝素钠成环率测试

应用编号: CN005-1

应用领域: 肝素分析

作者: 北京阿斯雷尔生物技术有限公司

修订日期: 2019年7月2日

摘要

本文中,我们利用 Asnail 肝素酶和 Ultimate AS-SAX 色谱柱检测依诺肝素钠中 1,6-脱水结构的比率(成环率)。检测结果显示,该组合获得了非常优异的降解、还原和分离能力,满足药典方法规定的系统适应性要求。

导言

依诺肝素钠(Enoxaparin Sodium)是通过化学降解法从普通肝素制备的低分子肝素,由结构复杂、长度不一的多糖链组成,重均分子量约为 4500 Da。在制备过程中,有一定比例的多糖链在其还原端形成了 1,6-脱水环状结构。该 1,6-脱水环状结构的百分比即为成环率,是依诺肝素钠区别于其他肝素类药物的主要特征。

图 1. 依诺肝素钠结构,示 1,6-脱水环状结构

在当前的药典方法中,成环率检测的第一步是通过肝素酶 I、II、III 组合彻底降解依诺肝素钠样品。酶解形成的不饱和二糖/四糖可通过阴离子交换(SAX)色谱柱进行分离,其不饱和 C=C 双键在紫外光谱范围内有吸收,可以通过紫外检测器进行检测。

依诺肝素钠样品经肝素酶降解后,形成的 1,6-脱水残基包括: 1,6-脱水 Δ IIS 及其异构体 1,6-脱水 Δ IIS^{epi},1,6-脱水 Δ IS,以及 1,6-脱水 Δ IS-IS^{epi}。其中,四糖残基 1,6-脱水 Δ IS-IS^{epi} 不能被肝素酶完全降解。

图 2. 四种 1,6-脱水残基的结构

在色谱分离过程中,二糖残基 Δ IIA(包含 α 和 β 两种构型)与 1,6-脱水 Δ IIS 及其异构体 1,6-脱水 Δ IIS^{epi} 形成共流峰。以硼氢化钠还原已降解样品,使非 1,6-脱水残基的保留时间 提前。由于 1,6-脱水环状结构的空间位阻效应,以上四种 1,6-脱水残基不能被还原,保留时间不变。

图 3. 非 1,6-脱水残基的硼氢化钠还原

1,6-脱水 Δ IIS 及其异构体 **1,6-**脱水 Δ IIS^{epi}之间的分离较难。二者的分离度,可作为考量色谱柱分离性能的指标。

酶解效率、还原效率和色谱分离效率,是药典规定的三项系统适应性要求。选择合适的 肝素酶和 SAX 色谱柱,对检测方法的建立至关重要。

在本文中,我们利用 Asnail 原生肝素酶和 Ultimate XB-SAX 色谱柱,检测了依诺肝素钠样品的成环率。检测结果完全符合药典规定的系统适用性要求,同时可大大降低单次检测的成本。

实验

仪器

色谱仪: Waters Alliance 2695 高效液相色谱系统

检测器: Waters 2487 紫外检测器

色谱柱: 见表 1

表 1. 色谱柱及肝素酶

货号	描述
1000-870232	Ultimate AS-SAX分析柱, 5 μm, 4.6×250 mm
AS00-2519-EP	肝素酶I,EP版,来自于肝素黄杆菌
AS00-6512-EP	肝素酶II,EP版,来自于肝素黄杆菌
AS00-8891-EP	肝素酶III,EP版,来自于肝素黄杆菌

试剂

肝素酶: Asnail 肝素酶 Ⅰ、Ⅱ、Ⅲ,来源于肝素黄杆菌

待测样品: 依诺肝素钠(由国内客户提供)

其他试剂为分析纯。

色谱条件

表 2. 色谱条件

	77	
参数	值	
流动相	A:2 mMol/L 磷酸钠,pH 3.0	
	B: 1 mMol/L 高氯酸钠,pH 3.0	
洗脱模式	梯度洗脱	
洗脱梯度	见表 3	
流速	0.8 mL/min	
进样体积	10 μL	
色谱柱温度	50 ℃	
检测波长	254 nm	
样品浓度	10 mg/mL 流动相	

表 3. 洗脱梯度

时间(min)	流动相 A(体积百分比)	流动相 B(体积百分比)
0 – 20	97 → 65	3 → 35
20 – 50	65 → 0	35 → 100
50 – 70	0	100

实验步骤

依诺肝素成环率测试的实验步骤参考《European Pharmacopoeia 9.0》 [1]。

注: 中国药典《依诺肝素钠质量标准(意见征求稿)》与欧洲药典相关章节的实验步骤相同。本文以欧洲药典进行数据处理和系统适应性检验。

结果与讨论

典型色谱图

根据文献[1]的方法,我们制备了 12 个依诺肝素钠的酶解溶液、12 个对应的酶解还原溶液。如未说明,下述样品溶液均表示 4 号酶解溶液及 4 号酶解还原溶液。

将依诺肝素钠酶解溶液(未还原)注入色谱系统,记录色谱图,如图 4。

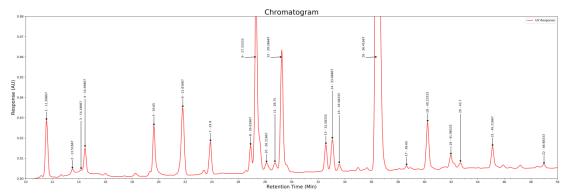


图 4. 依诺肝素钠酶解溶液(未还原)色谱图

将依诺肝素钠酶解还原溶液注入色谱系统,记录色谱图,如图 5。

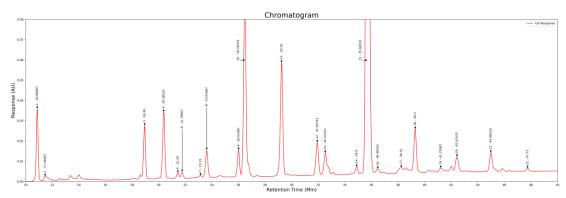


图 5. 依诺肝素钠酶解还原溶液色谱图

对比图 5 及图 4,可见还原溶液中大部分组分峰的保留时间提前了,为非 1,6-脱水残基。保留时间不变的峰为 1,6-脱水残基。

通过不饱和二糖标准品色谱图及空白溶液色谱图的对比(未示出),并参考欧洲药典方法后的相对保留时间表,可鉴别出图 5 中各组分峰对应的二糖和四糖,如表 4。

峰号	保留时间(Min)	相对保留时间	组分名称	峰面积(μV*s)	分子量
1	10.86667	0.3045	Reduced ΔIVA	348562	401
2	11.46667	0.3213	Reduced ΔIIH	39953	734
3	18.95	0.5311	Reduced ΔIVS	285994	461
4	20.38333	0.5712	Reduced ΔIIA	375665	503
5	21.45	0.6011	1,6-anhydro ΔIIS	32967	545
6	21.76667	0.61	1,6-anhydro ΔIIS ^{epi}	35553	545
7	23.15	0.6488	*	3815	503
8	23.61667	0.6618	Reduced ΔΙΙΙΑ	170340	503
9	26.01667	0.7291	Reduced ΔIH	153808	541
10	26.48333	0.7422	Reduced ΔIIS	1203321	563
11	29.25	0.8197	Reduced ΔIIIS	714524	563
12	31.93333	0.8949	Reduced ΔIA	221960	605
13	32.53333	0.9117	1,6-anhydro ΔIS	190882	545
14	34.9	0.978	Reduced ΔIIA-IVSglu	41220	1066
15	35.68333	1.0	Reduced ΔIS	6736831	665
16	36.48333	1.022	ΔΙS	30986	665
17	38.25	1.072	*	70738	1228
18	39.3	1.101	Reduced ΔIIA-IISglu	283944	1168
19	42.43333	1.189	*	112630	1228
20	44.98333	1.261	1,6-anhydro ΔIS-IS	146913	1210
21	47.75	1.338	*	19673	1228

表 4. 依诺肝素钠样品的峰表,对应图 4

通过样品分子量、各组分的分子量及面积,可计算该样品的成环率,公式如下:

成环率 =
$$100 \times \frac{Mw}{\sum Mw_x \times A_x} \times (A_1 + A_2 + A_3 + A_4)$$

= $100 \times \frac{4120}{7319402806} \times 406315 = 22.9$

其中 Mw=4120 为该批次样品的分子量, Mw_x 和 A_x 分别为各组分的分子量及峰面积, A_1 至 A_2 分别为四个 1,6-脱水残基对应的峰面积(对应表 4 中的色谱峰号 5, 6, 13, 20)。

欧洲药典规定,依诺肝素钠的成环率为15%-25%。该批次样品符合要求。

酶解适应性

图 6 为肝素酶降解效果。

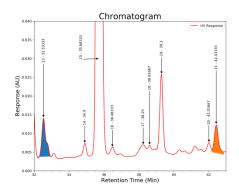


图 6. 肝素酶降解效果,取自图 5,其中 21 号峰为 1,6-脱水ΔIS-IS,13 号峰为 1,6-脱水ΔIS

酶解适应性对应 1,6-脱水 Δ IS-IS 与 1,6-脱水 Δ IS 之间的峰面积之比,即

$$\frac{A_{1,6-\text{anhydro }\Delta \text{IS-IS}}}{A_{1,6-\text{anhydro }\Delta \text{IS}}} = \frac{112630}{190882} = 0.590$$

该比值满足欧洲药典的酶解适应性要求(不超过1.15)。

还原适应性

图 7 为硼氢化钠还原效果。

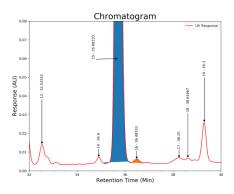


图 7. 硼氢化钠还原效果,取自图 5,其中 16 号峰为未还原 Δ IS,15 号峰为还原 Δ IS

还原适应性对应AIS 与还原AIS 之间的峰面积之比,即

$$\frac{A_{\Delta IS}}{A_{\text{reduced }\Delta IS}} = \frac{30986}{6736831} = 0.005$$

该比值满足欧洲药典的还原适应性要求(不超过0.02)。

柱效适应性

图 8 为色谱柱分离效果。

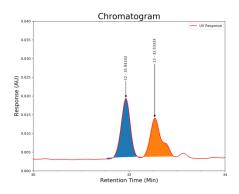


图 8. 色谱柱分离效果,取自图 5,其中 12 号峰为还原 Δ IA,13 号峰为 1,6-脱水 Δ IS

柱效适应性对应还原ΔIA 与 1,6-脱水ΔIS 之间的分离度,即

$$R_{s} = \frac{2 \times (RT_{1,6-\text{anhydro}\,\Delta IS} - RT_{\text{Reduced}\,\Delta IA})}{W_{1,6-\text{anhydro}\,\Delta IS} + W_{\text{Reduced}\,\Delta IA}} = \frac{2 \times (32.53333 - 31.93333)}{0.35316 + 0.3784} = 1.64$$

其中 RT 为两个相邻色谱峰的保留时间, W 为对应的全高峰宽。该比值满足欧洲药典的柱效适应性要求(不小于 1.5)。

此外,即使是较难分离的一对异构体,在本实验中也能顺利分离。如图 9 所示,在其他色谱柱中常常发生共流的 1,6-脱水ΔIIS 及其异构体 1,6-脱水ΔIIS^{epi} 形成了两个色谱峰,分离度为 1.13。

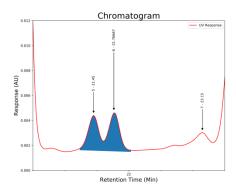


图 9. 一对 1,6-脱水残基异构体的分离效果,取自图 5,其中 5 号峰为 1,6-脱水 Δ IIS,6 号峰为 1,6-脱水 Δ IIS。

耐用性测试

绘制还原酶解溶液的重叠色谱图,如图 10。

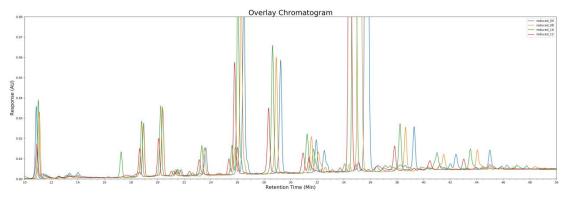


图 10. 酶解还原溶液重叠色谱图,分别对应第 8、16、20、24 针进样

由上图可见,在同一根色谱柱上,随着进样针数的增加,色谱峰的保留时间依次提前。从第 8 次进样(色谱曲线 reduced_04)到第 24 次进样(色谱曲线 reduced_12),还原ΔIS 的保留时间从 35.68 min 提前到了 35.45 min。

进样数对柱效的影响见表 5。

进样顺序	样品	分离度
8	酶解还原溶液#4	1.64
10	酶解还原溶液#5	1.61
12	酶解还原溶液#6	1.54
14	酶解还原溶液#7	1.55
16	酶解还原溶液#8	1.46
18	酶解还原溶液#9	1.41
20	酶解还原溶液#10	1.37
22	酶解还原溶液#11	1.30

酶解还原溶液#12 1.26

表 5. 各酶解还原溶液的分离度(还原ΔIA 与 1,6-脱水ΔIS)

根据我们的经验及客户反馈,Ultimate AS-SAX 色谱柱的分离度下降幅度与 Waters Spherishorb SAX 色谱柱相当。

24

结论

Asnail 原生肝素酶与 Ultimate AS-SAX 色谱柱配合,用于检测依诺肝素钠的成环率,具有非常优异的性能,满足欧洲药典规定的适应性要求。

参考文献

1. Council of Europe. European Pharmacopoeia 9.0. Strasbourg: Council of Europe; 2019. p. Heparins, Low-Molecular-Mass; pp.2353-2354.